Logo

American Security Council Foundation

Back to main site

Alan W. Dowd is a Senior Fellow with the American Security Council Foundation, where he writes on the full range of topics relating to national defense, foreign policy and international security. Dowd’s commentaries and essays have appeared in Policy Review, Parameters, Military Officer, The American Legion Magazine, The Journal of Diplomacy and International Relations, The Claremont Review of Books, World Politics Review, The Wall Street Journal Europe, The Jerusalem Post, The Financial Times Deutschland, The Washington Times, The Baltimore Sun, The Washington Examiner, The Detroit News, The Sacramento Bee, The Vancouver Sun, The National Post, The Landing Zone, Current, The World & I, The American Enterprise, Fraser Forum, American Outlook, The American and the online editions of Weekly Standard, National Review and American Interest. Beyond his work in opinion journalism, Dowd has served as an adjunct professor and university lecturer; congressional aide; and administrator, researcher and writer at leading think tanks, including the Hudson Institute, Sagamore Institute and Fraser Institute. An award-winning writer, Dowd has been interviewed by Fox News Channel, Cox News Service, The Washington Times, The National Post, the Australian Broadcasting Corporation and numerous radio programs across North America. In addition, his work has been quoted by and/or reprinted in The Guardian, CBS News, BBC News and the Council on Foreign Relations. Dowd holds degrees from Butler University and Indiana University. Follow him at twitter.com/alanwdowd.

ASCF News

Scott Tilley is a Senior Fellow at the American Security Council Foundation, where he writes the “Technical Power” column, focusing on the societal and national security implications of advanced technology in cybersecurity, space, and foreign relations.

He is an emeritus professor at the Florida Institute of Technology. Previously, he was with the University of California, Riverside, Carnegie Mellon University’s Software Engineering Institute, and IBM. His research and teaching were in the areas of computer science, software & systems engineering, educational technology, the design of communication, and business information systems.

He is president and founder of the Center for Technology & Society, president and co-founder of Big Data Florida, past president of INCOSE Space Coast, and a Space Coast Writers’ Guild Fellow.

He has authored over 150 academic papers and has published 28 books (technical and non-technical), most recently Systems Analysis & Design (Cengage, 2020), SPACE (Anthology Alliance, 2019), and Technical Justice (CTS Press, 2019). He wrote the “Technology Today” column for FLORIDA TODAY from 2010 to 2018.

He is a popular public speaker, having delivered numerous keynote presentations and “Tech Talks” for a general audience. Recent examples include the role of big data in the space program, a four-part series on machine learning, and a four-part series on fake news.

He holds a Ph.D. in computer science from the University of Victoria (1995).

Contact him at stilley@cts.today.

The Future of Space-Based Quantum Technology

Thursday, July 22, 2021

Categories: ASCF News Cyber Security

Comments: 0

Source: https://www.discovermagazine.com/technology/the-future-of-space-based-quantum-technology

Credit: Yurchanka Siarhei/Shutterstock

Quantum technologies are already revolutionizing life on Earth. But they also have the potential to change the way we operate in space. With the U.S., China and Europe all investing heavily in this area, these changes are likely to be with us sooner rather than later.

So how will space-based quantum technologies make a difference?

Now, we get an overview thanks to the work of Rainer Kaltenbaek at the Institute for Quantum Optics and Quantum Information, in Austria, and colleagues throughout Europe, who have mapped out the future in this area and set out the advances that space-based quantum technologies will make possible.

While quantum computing and quantum communication grab most of the headlines, Kaltenbaek and colleagues point out that other quantum technologies are set to have equally impressive impacts. Take for example, atom interferometry with quantum sensors.

These devices can measure with unprecedented accuracy any change in motion of a satellite in orbit as it is buffeted by tiny variations in the Earth’s gravitational field. These changes are caused by factors such as the movement of cooler, higher density water flows in the deep ocean, flooding, by the movement of the continents and by ice flows.

PLANET EARTH

TECHNOLOGY
The Future of Space-Based Quantum Technology
The next generation of quantum sensors are set to help us understand ourselves, the Earth and the cosmos in unprecedented detail.
The Physics arXiv Blog iconThe Physics arXiv BlogBy The Physics arXiv BlogJul 22, 2021 12:06 PM

quantum computing concept - shutterstock 1453123070
(Credit: Yurchanka Siarhei/Shutterstock)
Newsletter
Sign up for our email newsletter for the latest science news
EMAIL ADDRESS
SIGN UP

Quantum technologies are already revolutionizing life on Earth. But they also have the potential to change the way we operate in space. With the U.S., China and Europe all investing heavily in this area, these changes are likely to be with us sooner rather than later.

So how will space-based quantum technologies make a difference?

Now, we get an overview thanks to the work of Rainer Kaltenbaek at the Institute for Quantum Optics and Quantum Information, in Austria, and colleagues throughout Europe, who have mapped out the future in this area and set out the advances that space-based quantum technologies will make possible.

While quantum computing and quantum communication grab most of the headlines, Kaltenbaek and colleagues point out that other quantum technologies are set to have equally impressive impacts. Take for example, atom interferometry with quantum sensors.

These devices can measure with unprecedented accuracy any change in motion of a satellite in orbit as it is buffeted by tiny variations in the Earth’s gravitational field. These changes are caused by factors such as the movement of cooler, higher density water flows in the deep ocean, flooding, by the movement of the continents and by ice flows.

Climate Sensing
That’s why these kinds of quantum sensors will pave the way for a new era of Earth observation. These studies will reveal hard-to-observe effects of climate change on deep ocean currents, how stresses are building in continents as they move and will help us better understand Earth’s geology. “Space-based quantum sensors will enable better monitoring of the Earth’s resources and improve the predictions of Earthquakes and the adverse effects of climate change, like droughts and floods,” says Kaltenbaek and colleagues.

Better quantum clocks are also set to become influential. The key technology here is not so much the ability to keep time but the ability to transfer this information to another location with high precision. This ability will lead to networks of space-based clocks that are synchronized more precisely than anything available today.

Time-keeping networks are already considered foundational—global navigation satellites systems, such as GPS are good examples. And better timekeeping will allow more accurate geolocation services.

But this is just the beginning. One important application will be to create synthetic aperture telescopes for visible light.

The idea here is to record the arrival time of light waves at two different locations and then to compute an image of their source, such as a distant star. The resolution of this technique matches the resolution of a conventional telescope with an aperture equal to the distance between these points, which can be thousands of kilometers apart — hence the term synthetic aperture.

This has long been possible with longer wavelength radiation such as radio waves. Indeed, the first images of a supermassive black hole were made in 2019 using this technique for radio waves.

But visible light has a wavelength measured in nanometers rather than meters. That requires much more precise timing measurements to record their arrival, something that the next generation of space-based quantum time-keeping devices should enable.

Exoplanet Atmospherics
These kinds of synthetic aperture telescopes will be vastly more sensitive than anything we can build today, potentially allowing astronomers to study planets around other stars in huge detail. Space-based gravitational wave observatories should also benefit, allowing them to pick up fainter signals from colliding neurons stars and their ilk.

In the short term, the most high-profile advantages from space-based quantum technologies will come from secure communications. One well known application of quantum theory is in allowing information to be transmitted with perfect security.

In 2016, China launched Micius, the world’s first quantum communications satellite. It has already demonstrated secure video calls from one continent to another. Europe and the US are well behind in this area but should follow suit, linking land-based quantum communication networks to those in space and eventually enabling a global quantum internet.

Of course, all of this will require significant planning, much cooperation and plenty of funding. Europe has committed significant funds to future quantum technologies, China is ahead of the game in space-based quantum tech while the US lacks focus in some areas.

That will have to change if it is to regain leadership in these areas.

Comments RSS feed for comments on this page

There are no comments yet. Be the first to add a comment by using the form below.